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Abstract. This study introduces new strategies for global error estimation in time-stepping 
algorithms. The new methods propagate the defect along with the numerical solution much like the 
Zadunaisky procedure; however, the proposed approach allows for overlapped internal computations 
and, therefore, represents a generalization of the classical numerical schemes for solving differential 
equations with global error estimation. The resulting algorithms can be effectively represented as 
general linear methods. We present a few explicit self-starting schemes akin to Runge-Kutta methods 
with global error estimation and illustrate the theoretical considerations on several examples. 
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1. Introduction. The global error or a posteriori error represents the actual 
numerical error resulting after applying a time-stepping algorithm. Calculating this 
error is generally viewed as an expensive process, and therefore in practice only local 
error or the error from one step to the next is used to estimate the errors or control the 
step size. However, local error estimation is not always suitable, especially for prob
lems with unstable modes. This aspect prompts us to revisit global error estimation 
in order to make it more practical. 

In this study we introduce and analyze efficient strategies for estimating global 
errors for time-stepping algorithms. We present a unifying approach that includes 
most of the classical strategies as particular cases, and we develop new algorithms 
that fall under general linear time-stepping schemes. One of the most comprehensive 
surveys for global error estimation is by Skeel [. ]. We focus on a subset of the 
methods discussed therein and generalize some of the results presented there. 

Global error estimation in time stepping has a long history [ 
]. A posteriori global error estimation has been recently discussed 

in [ , 
in [ 

]. Step-size control with multimethod Runge-Kutta (RK) is discussed 
, , ]. Global error estimation for stiff' problems is discussed in [ , 
]. Adjoint methods for global error estimation for PDEs are analyzed in 

[ ]. These studies cover most of the types of strategy that have been proposed 
to address global error estimation. The Zadunaisky procedure [ ] is arguably the 
most popular global-error estimation strategy. The work of Dormand et al. [ ] 
relies on this procedure and is extended to a composition of RK methods in [ ]. 
Further extensions are introduced by Makazaga et al. [ ]. Shampine [ ] proposes 
using multiple methods to estimate global errors. 

Our work builds on similar ideas as introduced by Shampine [ ], Zadunaisky [ 
and the followups in the sense that the strategy evolves the defect along with the 
solution; however, in our strategy the internal calculations of the two quantities can be 
overlapped. Previous strategies can be cast as particular cases of the one introduced 
in this study when the overlapping part is omitted. Therefore, the new method 
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automatically integrates the local truncation error or defect. This leads to new types 
of schemes that are naturally represented as general linear (GL) methods, which are 
perfectly suited for this strategy, as we demonstrate. Although these algorithms work 
well with variable time-steps, we do not address error control strategies in this study. 

We consider the first-order system of nonautonomous ordinary differential equa
tions 

(1.1) y(t)' = f(t, y(t»; y(to) = Yo, to < t :::; T, y E ]Rm, f : ]Rm+1 --+ ]Rm, 

of size m with Yo given. We will use the tensor notation denoting the components in 
(1.1) by y{j} and f{j}, j = 1, 2, ... , m. We will often consider nonautonomous sys
tems because the exposition is less cluttered. In order to convert (1.1) to autonomous 
form, the system can be augmented with (y{m+l}), = 1, with y{m+l}(to) = to; hence, 
t = y{m+l}(t). This is likely not a restrictive theoretical assumption, but there can be 
exceptions [ ]; however, in practice it is preferable to treat the temporal components 
separately. For brevity, we will refer to (1.1) in both autonomous and nonautonomous 
forms depending on the context. 

The purpose of this study is to analyze strategies for estimating the global error 
at every time step n 

(1.2) 

that is, the difference between the exact solution y(tn ) and a numerical approximation 
Yn. A priori and a posteriori error bounds under appropriate smoothness assumptions 
are well known [ ]. This study focuses on efficient a posteriori estimates of €(tn ). 

We aim to bring a self-contained view of global error estimation. New results 
are interlaced with classical theory to provide a contained picture for this topic. The 
proposed algorithm generalizes all the strategies reviewed in this study and provides a 
robust instrument for estimating a posteriori errors in numerical integration. Section 
2 introduces the background for the theoretical developments and discusses different 
strategies to estimate the global errors, which include developments that form the 
basis of the proposed approach. In Sec. 3 we discuss the general linear methods 
that are used to represent practical algorithms. The analysis of these schemes and 
examples are provided in Sec. 4. In Sec. 5 we discuss the relationship between the 
approach introduced here and related strategies and show how the latter are particular 
instantiations of the former. Several numerical experiments are presented in Sec. 6, 
and concluding remarks are discussed in Sec. 7. 

2. Global errors. Let us consider a one-step linear numerical discretization 
method for (1.1), 

(2.1) Yn+l = Yn + At<I>(tn, Yn, Atn), Yo = y(to), n = 1,2, ... Tj At, 

where <I> is called the Taylor increment function with <I>(tn, Yn, 0) = f(t, y(t». We de
note the time series obtained via (2.1) as {Y~t}. A method of order p for a sufficiently 
smooth function f satisfies 

(2.2a) 

for a constant C1 . The local error then satisfies 

(2.2b) y(t + t:.t) - y(t) - t:.t<I>(t, y(t), t:.t) = dp+1 (t)t:.t
p
+1 + O(t:.tP+2

). 
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The following classical result states the bounds on the global errors. 
THEOREM 2.1. Let U be a neighborhood of {(t,y(t))lto ::::; t ::::; T}, where y(t) is 

the exact solution of (1.1) and there exists a constant L such that II f (t, y) - f (t, z) II ::::; 
LilY - zll and (2.2) is satisfied for (t, x), (t, y) E U. Then 

(2.3) Ilc(t)ll::::; fltP~2 (eL(t-to) -1) 
for a constant C2. 

This is proved in several treatises [ , , ]. Under sufficient smoothness as
sumptions [ , ], it follows that the global error satisfies 

(2.4) 

where Yn := Y6t(t) at t = to + nflt. These results are obtained by comparing the 
expansions of the exact and the numerical solutions. To alleviate the analysis diffi
culties that come with large p, we use the B-series representation of the derivatives. 

DEFINITION 2.2 (Rooted trees and labeled trees [,' ]). Let T be a set of ordered 
indexes Iq = {jl < j2 < j3 < ... < jq} with cardinality q. A labeled tree of order 
q is a mapping T : 1q\{jI} --+ Iq such that T(j) < j, Vj E Iq\{jl}. The set of 
all labeled trees of order q is denoted by LT q. The order of a tree is denoted by 
p( T) = q. Furthermore, we define an equivalence class of order q as the permutation 
(J : Iq --+ Iq such that (J(j) = j, Tk(J = (JTR., Tk, TR. E LTq. These unlabeled trees of 
order q are denoted by Tq, and the number of different monotonic labelings of T E Tq 
is denoted by a( T). Also, Tt = Tq U 0, where 0 is the empty tree and the only one 
with p(0) = O. 

DEFINITION 2.3 (Elementary differentials [ ,]). For a labeled tree T E LT q we 
call an elementary differential the expression 

(2.5) 

h K K K - 1 2 dfP} - ""rfP}/"" {Kl} {K2} {Kr} were 1, 2"", q- " ... ,m,an K"K2, ... ,Kr-u uy y ... y . 
We denote by F(T)(y) = [F{l}(T)(Y), F{2}(T)(Y), ... , F{m}(T)(y)V. 
We use the graphical notation to represent derivatives discussed in [ , ]. 

Example. The tree Y corresponds to f' f"(f, I). The trees of order 4 are T4 = 

{W,v,Y, i }, a(T) = 1 for T E T4\ {V}, a (V) = 3. 

DEFINITION 2.4 (B-series [ ]). Let a : T --+ IR be a mapping between the tree set 
and real numbers. The following is called a B-se'T'ies: 

flt 2 
B(a,y) = a(0)y + flta(· )f(y) + -2-a(% )F(% )(y) + ... 

(2.6) 
fltp(r)a(T) 

= L (T)! a(T)F(T)(y), 
rET p 

where T = {0} UTI UT2 U···· 
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The exact solution of an ODE system is a B-series [ ]. Formally we have the 
following result. 

THEOREM 2.5 (Exact solution as B-series [ D. The exact solution of (1.1)satisfies 

y(q)(T) = L a(T)F(T)(y), 
rET 

Therefore the exact solution is given by (2.6) with a(T) = 1, and the coefficient of 

!:itp(r) F(T)(Y) in the expansion is given by a«r))" 'ifT E Tk, k = 1,2, ... ,po pr. 
The elementary weights in the expression of the B-series are independent. The 

following result captures this aspect. 
LEMMA 2.6 (Independence of elemetary differentials [ D. The elementary differ

entials are independent. Moreover, the values of the distinct elementary differentials 
for (y{j}), = TI~=l (yU})m j Imj!, y{j}(to) = 0 are given by F(Ti)(y(tO)) = ei, where 
k is the number of resulting trees when the root is removed and mj is the number of 
copies of Tj. 

The order of the numerical method can be defined in terms of a B-series as follows. 
DEFINITION 2.7 (Order of time-stepping methods). A numerical method applied 

to (1.1) with f p-times continuous differentiable is of order p if the expansion of the 
numerical solution satisfies (2.6) with p(T) :s; p. 

2.1. Error equation. We now analyze the propagation of numerical errors 
through the time-stepping processes. 

THEOREM 2.8 (Asymptotic expansion ofthe global errors [ , D. Suppose that 
method (2.1) possesses an expansion (2.2b) under smoothness conditions of TheoTem 
2.1. Then the global eTror has an asymptotic expansion of form 

(2.7) y(t) - y~t(t) = ep(t)!:itP + ... + eN (t)!:it N + E~t(t)!:itN+l, 
where E~t(t) is bounded on to < t :s; T and 0 :s; !:it :s; !:iT for some !:iT, and ep(t) 
satisfies 

(2.8) 

The other ej (t) terms satisfy similar equations. 
Proof Consider a perturbed method Y~t(t) := y~t(t)+ep(t)!:itP. Then Yc"t(t) can 

be represented as the numerical solution of a new method: Yn+l = l7n+!:it<I>(tn, Yn, !:it). 
By comparison with (2.1) we obtain 

(2.9) <I>(t, Yn, llt) = <I>(t, Yn - ep(t)lltP, llt) + (ep(t + llt) - ep(t))lltP-
1 

. 

Expanding the local error of the perturbed method with the Taylor function defined 
by (2.9) yields 

y(t + !:it) - y(t) - llt<I>(t, y(t), !:it) 

(2.10) = (dp+1 (t) + ~~ (t, Y )ep(t) - e~(t)) lltP+! + O(lltP+2
) • 

It follows from Theorem 2.1 that the global error ep(t) satisfying (2.8) and 

(2.11) y(t) - y~t(t) = ep(t)lltP + O(lltp+1
) 

determines the asymptotic expansion. For more details see [ ]. 0 
Equations for the next terms in the global error expansion can be obtained by 

using the same procedure; however, this is not pursued in this study. 
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2.1.1. Estimating global errors using two methods. We now introduce 
the general global error estimation strategy used in this study. This approach relies 
on propagating two solutions through a linear time-stepping process that has the 
property of maintaining a fixed ratio between the truncation error terms. The result 
can be stated as follows. 

THEOREM 2.9 (Global error estimation with two methods). Consider numerical 
solutions {Yn} and {Yn} of (1.1) obtained by two time-stepping methods started from 
the same exact initial condition under the conditions of Theorem 2.8. If the local 
errors of the two methods with increments <I> and cl> satisfy 

(2.12a) 

(2.12b) 

y(t + 6.t) - y(t) - 6.t<I>(t, y(t), 6.t) = dp+!(tn )6.tp+1 + O(6.t
p
+2

), 

y(t + 6.t) - y(t) - 6.tcl>(t,y(t), 6.t) = ,dp+l(tn)6.tP+l + O(6.t
p
+2

), 

where dp+1(tn ) = (p~l)! LTETp+l a(r)a(r)F(r)(Yn) with constant, -I=- 1, then the 
global error satisfies 

(2.13) 

when Yo = Yo = y(to); hence, en ~ y(tn ) - Yn' 
Proof Use (2.7) and (2.8) to write the global error equations for the two methods 

with nearby solutions: 

(2.14a) 

(2.14b) 

e~(t) = :~ (t, y) . ep(t) + dp+1(t), ep(to) = 0, 

e~(t) = :~ (t, y) . ep(t) + ,dp+1 (t), ep(to) = o. 

It follows that the solutions of the two ordinary differential equations satisfy ep(t) = 
,ep(t). We can then verify (2.13) by inserting (2.11): 

ep(tn ) = _1_ (Y(tn) - y(tn )) 
1-, 

= _1_ (y(t) _ ep(t)6.tP - y(t) + ep(t)6.tP + O(6.tP+1)) 
1-, 

= ep(t)6.tP + O(6.tP+1) 

for n = 1,2, .... 0 
A particular case is, = O. Moreover, under the assumptions of Theorem 2.9, one 

can always compute a higher-order approximation by combining the two solutions. 
COROLLARY 2.10. If, = 0 in Theorem 2.9, then we revert to the case of using 

two methods of different orders, p and p + 1, to estimate the global errors for the 
method of order p. 

COROLLARY 2.11. A method of order p + 1 can be obtained with conditions of 
Theorem 2. D by 

(2.15) 
~ 1 _ , 
Yn = Yn + en = -1--Yn - -l--Yn . -, -, 

We note that a related analysis has been carried out in [ 1 with an emphasis of 
reusing standard codes for solving ODEs with global error estimation. 
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The result presented above is the basis of the developments in this study. We 
introduce new type of methods that provide a posteriori error estimates, and we show 
that this procedure generalizes all strategies that compute global errors by propagating 
multiple solutions or integrating related problems. The validity of this approach when 
variable time steps are used is discussed next. 

2.1.2. Global errors with variable time steps. Following [ . ], for variable 
time stepping we consider tn+l - tn = v(tn )6.t, n = 1,2, . .. 

Then the local error expansion (2.2b) becomes 

y(t + v(t)6.t) - y(t) - v(t)6.t <I>(t, y(t), 6.t) = 
dp+1 (t)v(t)P+16.tP+1 + ... + dN+l (t)v(t)N+16.t N+1 + O(6.tN+2) , 

and instead of (2.9) we obtain 

Then (2.10) becomes 

y(t + v(t)6.t) - y(t) - v(t)6.t<I>(t, y(t), lI(t)6.t) 

= 1I( t) ( dp+l (t )11( t)p + ~~ (t, Y )ep (t) - e~( t)) .6.tP+1 + O( .6.tp +2) . 

Instead of (2.8), the global error ep(t) satisfies the following equation 

(2.16) 

The results introduced in this study and summarized by Theorem 2.9 carryover to 
variable time stepping with 6.t replaced by 6.tmax = max(lI(t).6.t) and, therefore, 
allows the application of such strategies in practical contexts. 

In this study we do not address the problem of time-step adaptivity based on 
global error estimates. In practice, the adaptivity can be based on asymptotically 
correct local error estimates that are provided directly by the methods proposed here. 

2.1.3. Methods satisfying the exact principal error equation. We next 
review a class or methods used for global error estimation. Consider an asymptotic 
error expansion in (2.8) of 

(2.17) 

e(t) = L a(T)a(T)F(T)(y(t)) , t > to, and e(to) = L a(T)a(T)F(T)(y(tO)) , 
rET" 

for some constant a(T). By inserting (2.17) in (2.8) we obtain 

d(t) ~ :, [,~> Q(r)e(r)F(r)(Y(t))]- ~; (y(t)) . ,~" a(r)e(r)F(r)(y(t)) 

(2.18) = L a(T)e(T) [:tF(T)(y(t)) - ~~(y(t))F(T)(y(t))] . 
rET" 
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This expression implies that if the local error satisfies (2.18), then (2.17) is the exact 
solution of (2.8), and therefore the global errors can be estimated directly, as described 
below. 

This strategy was indirectly introduced by Butcher [ ] in an attempt to break the 
order barriers of multistage methods under the alias "effective order." Stetter [ ] 
observed the relationship between (2.18) and the global error (2.8). This strategy 
requires a starting procedure § to enforce e(to), a method M that satisfies (2.18), 
and a finalizing procedure IF to extract the global error. We denote by §(o), M(o), 
IF( 0) the application of each method on solution o. Stetter [ ] found that § and 
IF can be one order less than M. Examples of such triplets can be found in many 
studies [ , - , J. 

Algorithm [A:ExPrErEq]: Methods with exact principal error equation [ 
Solve 

(2.19a) 

(2.19b) 

Y1 = §(yo) , 

{ 
Yn = M(Yn-1) 

IF( ) 
n = 2, 3, ... , 

En = Yn - Yn-1 

y(to) = Yo 

so that (2.18). 

On'su'l1 . heme is provideu. in Appenilix C. However, a caveat is that methods 
based on explicit Runge-Kutta schemes require as many nonzero stage coefficients as 
the order of the method because M needs to have a nonzero tall tree of p + 1, hence, 
the effective order is limited by p :S s. For instance, an order 5 method requires at 
least five stages. This requirement comes from the fact that tall trees need to be 
nonzero in (2.18). However, this strategy is still effective for high orders. Recently 
the effective order was discussed in [ , . ,]. Effective order through method 
composition has recently been discussed in [ ]. 

Although this concept is attractive in terms of efficiency, Prince and Wright [ ] 
noted a severe problem with using it for global error estimation: If the system has 
unstable components, then the error approximation becomes unreliable, as can be 
seen in Fig. 6.4. This is a severe limitation because having unstable components 
makes the local error estimates unreliable, and this is precisely the case when one 
would need to use global error estimation. 

2.2. Differential correction. The differential correction techniques for global 
error estimation are based on the work of Zadunaisky [ ]. The discussion of the 
Zadunaisky procedure is deferred to Sec. 2.2.:3. 

2.2.1. Error equation and the defect. We follow the exposition in [ , 
and assume that there exists a solution z(t) of a perturbed system 

(2.20) z(t)' = f(t, z(t» - r(t); z(to) = Zo, r(O) = Yo - Zo, to < t :S T, 

close to y(t). The error function (between the solutions of (1.1) and (2.20» is given 
by [ ] 

(2.21 ) 

(2.22) 

e(t) = y(t) - z(t), 

e'(t) = A(t)e(t) - r(t), A = 11 f'(t,y(t) + se(t» ds. 

If e(to) = 0 and approximate A(t) = ~{ (t, y) + O( e(t» in (2.22), then we obtain 

(2.23) e'(t) = ~{ (t, y)e(t) - r(t), e(to) = 0, to < t :S T , 
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with r(t) = -dp+1 (t)t:.t
p. This is asymptotically equivalent to solving the first varia

tion (leading term) of the global error equation for ep ; i.e., (2.8). Consider now that 
the nearby solution, z(t), is obtained through an interpolatory function P(t), and 
define the defect D(t) as 

(2.24) D(t) = f(t, P(t)) - P'(t). 

Estimates of the local truncation errors can be obtained by using continuous out
put [ . ]. Lang and Verwer [ ] showed that if P(t) is obtained through Hermite 
interpolation, then 

D(t) = [y'(t) - f(t, y(t))]- [f(t, P(t)) - P'(t)] = O(t:.t3
) , t E (tn, tn+l) , 

and in particular D(tn + ~t) = O(t:.t4). Furthermore, a relation between the defect at 

tn + ~t and the leading term of the local truncation error, D(tn+!) = ~dp+l (tn)t:.t + 
O(t:.tP+!) , 1::; p ::; 3, can be obtained. We can then set r(t) = ~D(tn+1)' t E 

(tn, tn+I) , and (2.8) and (2.23) become 

(2.25) e'(t) = !'(tn,Yn)e(t) - r(tn+!) , e(to) = 0, tn < t::; tn+!, n = 0,1 , ... ,N . 

2.2.2. Solving the error equation. If the Jacobian of f is available, then 
(2.25) can be solved direct ly as in I J. 

Algorithm [A:SoErEq]: Solving the error equation [ 
Solve 

(2.26a) 

(2.26b) 

y' = f(t, y), 

c'(t) = Jc(t) + [dp+!(tn)t:.t] , 
y(to) = Yo 

c(to) = 0 

The authors of I ] argue that (2.26b) can be solved w.ith a cheaper, lower-order 
method. In this case, however, the bulk of the work resides on determining dp+1 . 

2.2.3. Solving for the correction. This approach follows the developments 
in presented in [ , , ] and further refined in [ - ]. We start from (2.20) and 
denote by P(t) its exact solution. Equation (2.21) becomes 

e(t) = y(t) - P(t) , and (2.27a) 

(2.27b) e'(t) = (y(t) - P(t))' = f(t, y(t)) - P(t)' = f(t, P(t) + e(t)) - P'(t). 

We can see the connection between (2.27b) and (2.8) by starting with (2.8): 

e'(t) = !,(t,y(t)) e(t) + D(t) = f(t,y(t) - f(t,y(t) - e(t)) - f(t,P(t)) - P'(t) 

= f (t, Y (t)) - P' (t) = f (t, P (t) + e (t)) - P' (t) , 

where we neglected the higher-order terms and used (2.24) and (2.27a). The equations 
to be solved are known as the Za:uunaisky procedure r 1 

Algorithm [A:ZaPr] : Zadunaisky procedure [ ] 
Solve 

(2.28a) 

(2.28b) 

y'=f(t,y), 

c' = f(t , P(t) + c) - P'(t) , 

P(t) ~ y(t) - Y6.t(t) . 

y(to) = Yo 

c(to) = 0 
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We will show that equations (2.28) (in [A:ZaPr]) can be solved by using a general 
linear method representation (5.1) described in Sec. 5.1. 

2.3. Extrapolation approach. The global error estimation through extrap
olation dates back to [ ]. The procedure is the following. Propagate two solu
tions Y6t n and y~1 n' one with 6.t and one with 6.t/2, each with global errors 

, 2 , 

C6t,n = y(tn ) - Y6t,n, c ~',n = y(tn ) - Y ~' ,n' respectively. 
Then it follows that by using a method of order p one obtains [ 

C6t,n = y(tn ) - Y6t,n = ep6.tp + O(6.t
p
+1), 

_ _ (6.t)P p+1 c~'n-y(tn)-y~tn-ep - +O(t.t ). 
2 ' 2 ' 2 

The global error and a solution of one order higher can be obtained as 

~ +1 
C6t n = --(Y6t n - y~t n) + O(6.tP ), , 1-2P , 2' 

(2.29a) 

(2.29b) 

These statements are a particular instantiation of (2.13) and (2.15) with 'Y = 1/2". 

Algorithm [A:Ex]: Extrapolation 
Solve y' = f(t, y) by using a method of order p with two time steps t.t and 6.t/2 

(2.30a) 

(2.30b) 

y' = f(t,y) =? Y6t,n, y~t,n' 

2P 

c = 1 _ 2P (Y6t,n - y ~' ,n) . 

y(to) = Yo 

2.4. Underlying higher order method. All the methods described in this 
study attempt to use an underlying higher order method to estimate the global er
ror. In the case of [A:ExPrErEq] the exact principal error algorithm (2.1D) and of 
[A:SoErEq] solving the error equation (2.26), we find that the actual equation being 
solved is modified to include the truncation error term. By adding (2.26a) and (2.26b) 
one obtains 

y' + c' = fj' = f(y) + Jc + D(y) 

fj' = f(fj - c) + Jc + D(y) 

fj' = f(fj) + D(y). 

In the case of the Zadunaisky algorithm [A:ZaPr] (2.28), one can recover the 
underlying higher-order method by replacing the error term in (2.28b) with fj from 
(2.1 5) and using the conditions imposed on P (see [ ]). We show an example in 
Sec. 5.1. The extrapolation algorithm [A:Ex] (2.:30) reveals the higher-order estimate 
directly in (2.2Db). 

3. General linear methods. The methods introduced in this study are rep
resented by GL schemes. General linear methods were introduced by Burrage and 
Butcher [ ]; however, many GL-type schemes have been proposed to extend either 
Runge-Kutta methods [ ] to linear multistep (LM) or vice versa [, ], as well as 
other extensions [ , ]. GL methods are thus a generalization of both RK and 
LM methods, and we use the GL formalism to introduce new methods that provide 
asymptotically correct global error estimates. 
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Denote the solution at the current step (n-1) by an r-component vector yIn-I] = 

[y[~)I] y[~)I] ... y[~)l]]T, which contains the available information in the form of 

numerical approximations to the ODE (1.1) solutions and their derivatives at dif
ferent time indexes. To increase clarity, we henceforth denote the time index in
side square brackets. The stage values (at step n) are denoted by Y(i) and stage 
derivatives by f(i) = f (Y(i))' i = 1,2, ... , s, and can be compactly represented as 

Y = [YTt) Yf;) ... Yts)f and f = [q;) f~) ... f~)f· 
The r-value s-stage GL method is described by 

s r 

Y(i) = Llt L Aijf(j) + L Uijy[;)-I], i = 1, 2, ... , s, 

(3.1) j=l j=1 
s r 

y[7] = L LltBijf(j) + L Vijy[;)I], i = 1, 2, ... , r, 
j=1 j=1 

where (A, U, B, V) are the coefficients that define each method and can be grouped 
further into the GL matrix M: 

[ Y] [A Q9 1m U Q9 1m ] [ Lltf] [Lltf] 
yIn] = B Q9 1m V Q9 1m yln-l] = M yIn-I] . 

Expression (3.1) is the most generic representation of GL methods [ . , p. 434] and 
encompasses both RK methods (r = 1, s > 1) and LM methods (r > 1, s = 1) 
as particular cases. In this work we consider methods with r = 2, where the first 
component represents the primary solution of the problem (2.12a) and the second 
component can represent either the defect (2.13) or the secondary component (2.12b). 
Only multistage-like methods are considered; however, multistep-multistage methods 
(r > 2) are also possible. 

If method (3.1) is consistent (there exist vectors qo, qi such that V qo = qo, U qo = 
:D., and B:D.+ Vql = qO+ql [ , Def. 3.2 and 3.3]) and stable (11Vnll remains bounded, 
'tin = 1,2, ... [ . , Def. 3.1]), then the method (3.1) is convergent [ , Thm. 3.5], [ 

]. In-depth descriptions and survey materials on GL methods can be found in [, , 
, , ]. In this study we use self-starting methods, and therefore § = I. In general 

the initial input vector ylO] can be generated through a "starting procedure," § = 
{Si : JR.m -+ JR.m}i=l...r' represented by generalized RK methods; see [ , Chap. 53] 
and [ ]. The final solution is typically obtained by applying a "finishing procedure," 
IF : JR.m -+ JR.m, to the last output vector; in our case this is also the identity. We 
denote by the GL process the GL method applied n times and described by §MnlF; 
that is, M is applied n times on the vector provided by §, and then IF is used to extract 
the final solution. 

3.1. Order conditions for GL methods. The order conditions rely on the the
ory outlined by Butcher [ , , ]. The derivatives of the numerical and exact solution 
are represented by rooted trees and expressed as a B-series [, ] as delineated in The
orem 2.5 and order definition 2.7. We use an algebraic criterion characterize the order 
conditions for GL methods as follows. Let T E T and E(f)) : T -+ JR., the "exact solu
tion operator" of differential equation (1.1), which represents the elementary weights 
for the exact solution at BLlt. If B = 1, then E(l)(T) = E(T) = p(T)!j(a(T)a(T)). The 

order can be analyzed algebraically by introducing a mapping ~i : T -+ JR.: ~i(0) = b~i), 
~i(T) = <J?(i) (T), where <J?(i) (T), i = 1, ... ,r, results from the starting procedure and 
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o represents the "empty tree." Then for the generallin~ar method (A, U, B, V), one 
has 

(3.2) 

where TJ, TJD are mappings from T to scalars that correspond to the internal stages and 
stage derivatives and f represents the output vector. The exact weights are obtained 
from [E~](T). The order of the GL method can be determined by a direct comparison 

between f(T) and [E~](T). More details can be found in [ ], where a criterion for 
order p is given for a GL method described by M and §. The criterion is simplified if 
§ = IF = I as discussed in [, ]. Therefore in general, an order p GL method results 
from the direct comparison of elementary wights of [Mn] (Tj) = [En~]( Tj) 'rITj, p( Tj) :s; 
p. This criterion is a direct consequence of [ , Def. 3 and Prop. 1]. In our particular 
case, methods satisfying Theorem 2.9 can be developed by enforcing (2.12) on the 
corresponding solution vector. 

3.2. Linear stability of GL methods. The linear stability analysis of method 
(3.1) is performed on a linear scalar test problem: y'(t) = ay(t), a E C. Applying 
(3.1) to the test problem yields a solution of form y(n+1] = R(z) yIn], 

(3.3) 
(3.4) 

R(z) = V + zB (Is - zA)-l U, 

<l>(w, z) = det(wlr - R(z)) , 

where z = a6.t and R(z) is referred to as the stability matrix of the scheme and 
<l> (w, z) is the stability function. 

For given z, method (3.1) is linearly stable if the spectral radius of R(z) is con
tained by the complex unit disk. The stability region is defined as the set S = 
{z E C : IR(z) I :s; I}. The linear stability region provides valuable insight into the 
method's behavior with nonlinear systems. Additional details can be found in [ ]. 

4. Methods with global error estimation (GEE). We now introduce GL 
methods with global and local error estimation. We focus on Runge-Kutta-like 
schemes in the sense that the resulting GL methods are self-starting multistage 
schemes. We therefore restrict our exposition to methods that carry two solutions 
explicitly and where r = 2. Generalizations are possible but not addressed here. 
The methods are given in two forms that use different input and output quantities. 
The first form used for numerical analysis results in a scheme denoted by GLyy that 
evolves two solutions of the ODE problem y and y. Methods GLyy take the following 
form: 

( 4.1) 

s 

1(i) = 6.t L Aijf(Y(j)) + Ui,ly~~)l] + Ui,2y~~)-1], 
j=l 

s 

Y!~l = 6.t L Bi,r!(Y(j)) + V1,ly~~)1] + V1,2y!~)1] , 
j=l 

s 

Y~~l = 6.t LB2,jf(1(j)) + V2,ly~~)1] + V2,2y!~)1]. 
j=1 

i=1,2, ... ,s, 

We will consider V = Ir , although more general forms can also be considered . The 
second form, denoted by GLYE, is given as a method that evolves the solution of the 
base method and the error explicitly, y and E, as {y[n],E[n]} = GLYE({y[n-1] , E[n-1]}), 



12 E.M. Constantinescu 

and has a more practical flavor. Both forms can be expressed as GL methods with 
tableaux (Ayi) , U yy, BYi), V yi)) and (AYE:, U yE:' BYE:, V YE:), respectively; and one can 
switch between the forms as explained below. 

LEMMA 4.1. GL methods of form (4.1) that satisfy the conditions of Theo
rem 2 .. 9 with coefficients (Ayi), UYi), BYi), VYi)), where y[n] = [(y[n])T, (Y[n])T]T, and 

(AYE, UyE,B ye , V ye ), where y[n] = [(y[n])T, (e[n]f]T are related by 

where T = [~ 1 ~, ]. 
Proof. We start with a GLye method defined by (Aye' UYE:' BYE:, VYE:) and write 

the resulting expression by applying (4.1) with Y[~l = y[n] and y1;l = e[n]. We then 

replace e[n] with I~'Y (y[n] - y[n]) as in Theorem 2.9, (2.13). The resulting expres

sion can then be written as a GLyy scheme with Yl~l = y[n] and y[;l = y[n]. This 
calculation leads to (4 .2). This transformation is unique as long as , '11. 0 

The fol!owiJlg algorithm is proposed. 

Algorithm [A:GLMGEE]: General linear methods with global error estimation 
Initialize: y[o] = y(to) = Yo, e[O] = e(to) = o. 
Solve: y' = f(t, y) using 

( 4.3a) 

(4.3b) 

(4.3c) 

{y[n], e[n]} =GLye( {y[n-I], e[n-I]}), 

eloc =e[n] - e[n-I] , 

yfn] =y[n] + e[n] = _1_y[n] _ _ '_y[n] 
1-, 1-, 

[solution, GEE] 

[local error] 

[high order] 

4.1. Consistency and pre consistency analysis. We now discuss consistency 
and preconsistency conditions in the case of a method with r = 2. Following [ ], we 
require that 

(4.4a) 

(4.4b) 

( 4.4c) 

y1n- 1
] =qi,Oy(tn-l) + ~tqi,ly'(tn-d + V(~t2), i = 1,2 

Yi =y(tn-I + ci~t) + V(~t2), i = 1,2, ... , s 

yln] =qi,Oy(tn) + ~tqi,ly'(tn) + O(~t2), i = 1,2. 

From (4.4b) we obtain 

y(tn-d = (Ui,lql ,O + ui,2q2,O)y(tn-d 

+Ci~ty'(tn-I) + ~t(Ui,lql,1 + ui,2q2,I)y'(tn-l) 

+ ~t L ai,jy'(tn-I) + V(~t2), i = 1,2, ... , s, 
j 

and therefore Uqo = 1 and Ci = Lj ai,j + Uql. We next combine (4Aa) and (4Ac): 

qi,o(y(tn-d + ~ty'(tn-I)) + ~tqi,ly'(tn-l) = qi,Oy(tn-l) + ~tqi,ly'(tn- l) 

+ ~t L b1,jy(tn-d + O(~t2) , 
J 

where we have considered that V = I. The consistency condition B:n. = qo follows. 
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4.2. Order conditions. The order conditions are based on the algebraic repre
sentation of the propagation of the B-series through the GL process as discussed in 
§3.1. Additional constraints are imposed so that Theorem 2.9 applies directly as a 
result of the GL process. To this end, we consider an order p GLyy method by setting 
E6(T) = [l(T) = [2(T), for all T E Tp , and 

( 4.5a) , (E6(T) - [1 (T)) =E6(T) - [2(T) , T E Tp+I ,,-=1-1, 

assuming that the inputs of the GP process ,6(T) = 6(T), T E Tp+1' Here [ repre
sents the numerical output, and E~ corresponds to the exact solution as introduced 
in U~.2). Then the error of the base method satisfies 

(4.5b) Cp = L (E6(T) - [l(T))F(T)(y) + O(CltP+I). 
TETp +1 

Expression (4.5a) is equivalent to imposing (2.12). We also impose stability order [ 
p = p + 3: iI>(exp(z), z) = O(CltP), to obtain robust methods. 

The two solutions that evolve through the GL process are connected internally, 
and therefore the error estimation may be hindered in the case of unstable dynamics 
as discussed in [ ]. In Fig. 6.4 we illustrate such a behavior. To this end, we require 
that the elementary differentials of the two methods resulting from applying the GL 
method be independent from each other's entries for all trees of order p + 1 and p + 2. 
This requirement can be expressed as 

where ~{£} (Tj) is the coefficient of input R corresponding to tree index j and ~i} (Tj) is 
the coefficient of GL output i corresponding to tree index k. In other words, output 
1 that corresponds to tree index j does not depend on the input 2 of tree index k, 
and the same for output 2 and input l. 

LEMMA 4.2. The elementary differentials of a GL method (4.1) with V = I 
satisfy 

where K is a constant that depends on the tree index and G is a function of T of 
orders 1 to p - 2. 

Proof. For the first tree T0 we have T/D( T0) = O. The next tree is T1 = • , for 

which T/D(· ) = 1. Relation (:3.2) gives 

This is allowed by Lemma 2.6. Next we have T/D(T2) = T/D( % ) = T/(TI) and 

For the next tree we have T/D(T3) = T/Dt\!) = (T/(T1))2 and 
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where the power is taken component-wise. The last third-order tree gives rJD(T4) = 

rJD( I ) = 1](T2)) and 

rJ(T4) = A(A· (A1]D(Td + U~(Td) + U~(T2)) + U~(T4) 
= A 3 :D. + A2U~(Tl) + AU~(T2)) + U~(T4), 

We then arrive at the following recurrence formula: 

(4.8a) rJD(Tp) = A II rJ(Tj) + U~(Tp-d· 
jEIp _ 1 

Similarly, one can verify that the recurrence for the output quantities satisfies 

(4.8b) ~(Tp) = BA II 1](Tj) + BU~(Tp_l) + ~i(Tp), Lp-l = {I, 2, ... ,p - I}. 
jEIp _ 1 

This is a consequence of the fact that D(Tp) = ITkE{1,2,p-l} Tk. For trees with index 
3 and 4 the output is obtained again from (3.2) and using the above derivations as 

~(T3) = B((A:D.s)2 + (U~(Td)2) + ~i(T3), 
~(T4) = B(A· (A:D. + U~(Td) + U~(T2)) + ~i(T4), 

An inductive argument yields (4.8b). 0 
PROPOSITION 4.3 (Output independence of GL method). A GL method for which 

the off-diagonal elements of matrix BU are zero satisfies the independence assumption 
(4.6). 

Proof We use the results of Lemma 4.2 and compute the output i for trees of order 
p + 1 and assume that the input is consistent of order p, that is, ~i(TkE{1,2, ... ,p}) = O. 
We obtain 

For p + 2 and together with the fact that BU is a diagonal matrix, we obtain 

o 

~(Tp+2) = K + ~i(Tp+2) + BU~(Tp+d + G(TkE{1,2, ... ,p}) 

= K + ~i(Tp+2) + BU~(Tp+l) 
= K + ~i(Tp+2) + (BU)ii~i(Tp+l)' i = 1,2. 

A similar calculation for p+ 3 reveals that matrices BAU and B diag(A:D.)U need 
to have only diagonal entries. 

4.3. Optimal methods. We now discuss the need to balance the local trunca
tion errors, which we would like to be as small as possible, with the ability to capture 
the global errors. Zadunaisky's procedure is attractive because it allows the reuse of 
methods with well-established properties. In particular, one may consider methods 
that minimize the truncation errors. However, when such optimal methods are used 
in the context of global error estimation, it is important to verify that the errors are 
still quantifiable. For instance, if not all the truncation error terms are nonzero, then 
special care needs to be exercised because some problems may render the global error 
estimation "blind" to local error accumulation. 
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To illustrate this rather subtle point, we con
sider using Zadunaisky's procedure (2.28) with 
method R.K3(2)G1 (5.2) introduced in [ ]. This 
is a third-order scheme; however, it has no errors 

that correspond to fourth- order trees V and I 
but does not resolve exactly Y and 7; other
wise it would have been a fourth-order method. 
With the aid of Lemma 2.6 we construct a sim
ple problem: yi = 1, yb = /1,2Yr, y~ = /1,3Yf, 
where /1,i are some constants. For this problem, 
the RK3(2)G1 is an order 4 method because the 
tall tree that would have affected the third com
ponent is matched exactly by this method. This 
means that the base method y has the same or-
der as the higher-order companion, y. Therefore, 

10-

5 

r==========~ 
1

- exact error I 
-~- eslimaled global 8rro~1 

10"'00---0=-'=.2:-------:'0.":-4 --0=-'=,6:-------=-0-=-a------' 
lime 

FIG. 4.1. Failure to capture the 
global errors correctly for system y~ = 
1, y~ = /'i,2YY, Y~ = /'i,3yf solved with 
RK3(2)Gl (5.2) [ }. 

the third component can cause the results to be unreliable. In Fig. 4.1 we show the 
third component, which confirms the inadequacy in the error estimation procedure. 

4.4. Second-order explicit Runge-Kutta-type methods. We now intro
duce a few methods of type [A:GLMGEE] (4.3). We begin with a detailed inspection 
of second-order methods. Schemes with s = 2 are not possible because that would im
ply that one can have an explicit third-order method via (2.15) with only two stages, 
which is a statement that is easy to disprove. 

A method with s = 3 and "( = 0 in GLye form is given by the following tableaux, 

(4.9) MYE: = [ 1)4 
1/ 12 
1/12 

o 
o 

1/4 
1/12 
1/12 

o 1 
o 1 
o 1 

5/6 1 
-1/6 0 

where the four blocks represent (AYE:, U YE:, BYE:, V YE:) as discussed above. Method 
(4.9) can then be expressed as follows: 

(4.10a) 

(4.10b) 

( 4.10c) 

(4.10d) 

(4.10e) 

Y
1 

=y[n-l], 

Y2 =y[n-l] + 10e[n-l] + Ilt!(Y1) , 

Y3 =y[n-l] - e[n-l] + Ilt (~!(YI) + ~ !(Y2)) , 

y[n] =y[n-l] + Ilt - !(Y1) + - !(Y2) + - !(Y3) ( 1 1 5 ) 
12 12 6 1 

e[n] =e[n-l] + Ilt ( ~!(YI) + ~ !(Y2 ) - ~ !(Y3 ) ) 
12 12 6 

In (4.10) we note the R.unge-Kutta structure; however, we see that the defect takes 



16 E.M. Constantinescu 

an active role in the stage calculations. By using (4.2), we obtain the GLyy form as 

(4.11) Myy = 

o 
1 

1/4 
1/12 
1/6 

In particular, (4.11) is expressed as 

(4.12a) 

(4.12b) 

( 4.12c) 

(4.12d) 

(4.12e) 

o 0 
o 0 

1/4 0 
1/12 5/6 
1/6 2/3 

y[n)_ y[n). 

Here we note the explicit contribution of two solutions. A solution of order 3 is 
obtained according to (2 .15) by y[n) = y[n) because 'Y = O. Moreover, a local error 
estimate for y[n) in (4.12c1) corresponds to 

which is an obvious statement. This is also obtained by replacing y[n-I) by y[n) in 
the right-hand sides of (4.12) and taking the differences between the two solutions or 
setting e[n-I) = 0 in (4.10). Additional second-order methods are given in Appendix 
A.I. 

4.5. Third-order explicit Runge-Kutta-type methods. Closed-form solu
tions were difficult to obtain for methods of order 3. We therefore explored the space 
of such methods using a numerical optimization such as in [ ]. One method of order 
3 with 'Y = 0, s = 5 stages, and having significant negative real axis stability was 
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found to have the following coefficients up to 40 digits accuracy: 

(4.14) 
2169604947363702313 __ 46526746497697123895 

a2,l = -- 24313474998937147335' a3,1 -- 94116917485856474137' 

23364788935845982499 79205144337496116638 40051189859317443782 
a4,1 = 87112531ltI 44721i389~ :1(j' a4,2 = -- 148994349441340815519' a4,3 = 36487615018004984309' 

42089522664062539205 1507.43847003012762939 62274678522253371016 
a5,1 = 124911313006412840286' a5,2 = -- 13792728(J8652897116282' a5,3 = -- 125918573676298591413' 

b1,3 = 

13755475729852471739 
79257927066651693390' 

2~0610~8952676379087 
[58739:J47951i03872:.v165 ' 

b 6 1 546696837~58703723 
1,1 = 569825195237 0l60813' 

b 3577972206874351339 
1,4 = 7599733370677197135' 

b2 1 -- -- 9738262~869B'1159168 b2 ,2 = -- ~i~~i~~~~i~~~~~~~~~~ , , -- 9920908246 /i,18774298:j , 

b2,4 = i~~~~~~~~~~~~~~~~g~3' 
100436141\39674808267 

U1,2 = 808(3923570501)469826' 

78486094644566264568 
U3,1 = 881H030896733822981' 

U4,2 = 19175931694070625119 
84570853840405479554' 

b2 ,5 = 195416:15:10:A8:0<1J06Ni;06~1' 
161694774978034105510 

U2,1 = 106187653640211060371' 

968d~362521075U84 [ 3 
U3,2 = 88171030896733822981' 

8607282770183754108 
U5,1 = 108658046436496925911' 

b1,2 = -- 2505:915078:2247?5218300682i:l55t1 ' 

b -- 50'[1\0832954780563947 
1,5 -- -- 1373(lOO;l8GR533856307U' 

b2 ,3 = ii~i~~6i~g~~6~~~~~~~' 

55507121337823045139 
U2,2 = -- 106187653640211060371 ' 

__ ()53940221'16334.8i'>'1435 
U4,1 -- 8'15708538/1040511 7955<1 ' 

100050763666313171803 
U5,2 = 108658046436496925911' 

We note that this is not an optimal method. It is just an example that was relatively 
easy to obtain and will be used in the numerical experiments. 

5. Relationships with other global error estimation strategies. Here we 
discuss the relationship between our approach and the existing strategies that we focus 
on in this study. We show how the latter are particular instantiations of the strategy 
introduced here. This inclusion is facilitated by the use of Lemma 4.1, which reveals 
a linear relationship between propagating two solutions and propagating one solution 
and its defect. We discuss below in some detail the Zadunaisky procedure and the 
extrapolation approach. Method [A:ExPrErEq] with exact principal error equation 
(2.19) can obviously be represented as a GL schemes. Methods that implicitly solve 
the error equation can also be represented as GL schemes; however, in this study we 
will not expand on this point. 

5.1. Zadunaisky's approach. Let us consider the Runge-Kutta methods that 
integrate the global errors introduced by [ ]. The RK tableau is defined 
by the triplet (A, S, C) and the interpolation operators by (B*, D*), where B* . 
[eO, e1, ... , es]T yields the interpolant weight vector and D* . [eO, 01, ... , osjT yields its 

derivative. In particular, Dij = Bij . j, j = 1, ... , s. Denote by bi(O) = .z=~:1 Bijej, 

di( e) = .z=~:1 DijOj, and consider the dense output formula given by 

i=l i=l 

and the error equation that is being solved is (2.28b) (e'(t) = f(t, P(t) +e(t)) - P'(t)). 
We denote by B* = diag{C} . B* . W(C)T, where W(C) is the Vandermonde matrix 
with entries C; that is, {W(C)}ij = C{-l; and D* = D* . W(C)T. The resulting 
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method cast in GL format (4.1) is 

(5.1) 

Here we express the method for a scalar problem, in order to avoid the tensor products 
and represent the stacked stages in Y{l,2}' For example, method RK3(2)G 1 [" ] is 
given by the following Butcher tableau: 

0 0 

B' - [ : 

3 2 

j 
1 1 0 

- 2 3
4 2 2 2 -~ 3 

(5.2) 1 -1 2 0 
- 0 

6 -6 
0 -1 1 

1 1 2 1 0 6 3 6' Dij = Bij' j 
1 2 1 0 '6 3 6' 

The equations to be solved when using the Zadunaisky procedure [A:ZaPr] are then 
(2.28); however, one can show that they are equivalent to solving (5.1) and using the 
strategy [A:GLMGEE] (4.1) introduced here. The explicit coefficients are listed in 
tableau (B. 1). 

5.2. Global error extrapolation. Let us consider again the Runge-Kutta 
methods defined by the triplet (A, B, C) of order p. By applying (2.29) we obtain the 
method in the GL format, 

(5.3) = 

where f3 = 1~')" I = 1/2P, and Y{1,2,3} are the s-stage vectors corresponding to the 
original method stacked on top of each other. This is a method of type (4.1). 

6. Numerical results. In this section we present numerical results with a de
tailed set of test problems. 

6.1. Test problems. We consider a set of simple but comprehensive test prob
lems. 

Problem [Prince42] is defined in [ ] (4.2) by 

(6.1a) 

(6.1b) 

y' = y - sin(t) + cos(t), y(O) = K, 

y(t) = K, * exp(t) + sin(t) . 

Here we take K, = O. As a direct consequence of (6 .1 b), we see that that any per
turbation of the solution y, such as numerical errors, leads to exponential growth . 
Therefore we have an unstable dynamical system; and even if we start with /'i, = 0, 
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numerical errors will lead to an exponential solution growth. This is a classical exam
ple that is used to show the failure of local error estimation in general and of global 
error estimation by using Algorithm [A:ExPrErEq] (2.19) [ ] in particular. 

A similar problem [Kulikov2013I] is defined by Kulikov [ ] by 

(6.2) y~ = 2ty~/5Y4' y~ = 10texp(5(Y3 -1))Y4, y~ = 2tY4, y~ = -2tln(Yl)' 

so that Yl(t) = exp(sin(t2
)), Y2(t) = exp(5 sin(t2

)), Y3(t) = sin(t2
) + 1, Y4(t) = cos(t2 ). 

This problem is non autonomous and exhibits unstable modes later in time. 
Problem [Hu1l1972B4] is a nonlinear ODE defined in [ , ] (B4) by 

(6.3) , YIY3, Y2Y3, Yl 
Yl = -Y2 - VY? + y~ , Y2 = Yl - Vyr + y~ , Y3 = VY? + y~ , 

with Yo = [3,0, O]T. 
The last problem [LStab2] is used to assess linear stability properties of the pro

posed numerical methods. 

(6.4a) 

(6.4b) 

Y' = Ay, y(O) = [Yl(O), Y2(0)]T, A = [ ~ ~b], A(A) = {a + ib, a - ib}, 

{ 
Yl(t) = exp(at) (Y2(0) cos(bt) - Yl(O) sin(bt)) 
Y2(t) = exp(at) (Yl(O) cos(bt) + Y2(0) sin(bt)) 

This problem allows one to choose the position of the eigenvalues of the Jacobian, 
A(A), in order to simulate problems with different spectral properties. 

6.2. Numerical experiments. We begin with simple numerical experiments 
that show when local error estimation is not suitable. Local error estimation is typi
cally used for error control; however, in this study we do not explore this aspect. We 
therefore compare the result of well-tuned numerical integrators that use local error 
control with the global error estimates for the same problem. The two contexts are 
different; however, the error estimation problem remains the same. We use Matlab's 
ode45 integrator with different tolerances whenever we refer to methods with local 
error estimation. 

In Figure 6.1 we show the errors over time for problems [Prince42] (6.1) and 
[Kulikov2013I] (6.2). These problems are solved by using local error estimation (LEE) 
- 6.1(a-b) and global error estimation (GEE) - 6.1(c-d). The absolute error tolerance 
for LEE control is set to 1e-02. The methods with LEE systematically underestimate 
the error levels as expected, whereas the methods with GEE capture the errors exactly. 
Moreover, the global errors are captured well across components, as shown in Fig. 
G.1(d). 

In Fig. G.2 we show the error behavior for problem [Hu1l1972B4] (G.3) when long 
integration windows are considered. For LEE we set the absolute tolerance to 1e-05. 
In this case we observe an error drift to levels of 1e-03 over 1,000 time units. The 
method with GEE (4.11) can follow closely the error in time. 

We next analyze the convergence properties of the methods discussed herein. In 
Fig. G.3 we show the convergence of the solution and of the error estimate. Here 
we illustrate the convergence of GEE methods of orders two (A.2) and three (4.14) 
for problem [Prince42] (6 .1) . The methods converge with their prescribed order; 
moreover , the error estimate also converges with order p+ 1, as expected from (2.15). 
In Fig. 6.4 we show the behavior of global error estimation when using [A:ExPrErEq], 
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FIG . 6.1. Errors when solving problems with unstable modes by using local error estimation 
(LEE) and global error estimation (GEE) [A :GLMGEE}. The absolute error tolerance for LEE 
control is set to le-02. The GEE method used here is (A.I) . GEE captures the errors exactly while 
LEE underestimates them. 

methods with exact principal error equation (2.19). Here we use method (C.I) [ 
(3.11)], which fails to capture the error magnitude as discussed in [ ] because the 
estimated error is several orders of magnitude smaller that the true global error. 

We next look at the linear stability properties of the methods introduced in this 
study. In Fig. 6.5(a) we delineate the stability regions according to (3.3). In Fig. 
6.5(b) we show numerical results for problem [LStab2] (6.4) with )"6.t = {l,~, ~,l} x 
(-1 ± A) when using method (A.l). As expected, all solutions except for the one 
corresponding to )"6.t = -1 ± A are stable, as can be interpreted from Fig. 6.5(a). 

7. Discussion. In this study we introduce a new strategy for global error esti
mation in time-stepping methods. This strategy is based on advancing in time the 
solution along with the defect or, equivalently, two solutions that have a fixed rela
tion between their truncation errors. The main idea is summarized in Theorem 2.D, 
and practical considerations are brought up by Proposition 4.3. We note that this 
strategy can be seen as a generalization of the Zadunaisky procedure and of several 
others from the same class. We provide equivalent representation of these methods in 
the proposed GL form, (4.1). 
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FIG. 6.2. Errors when solving (Hull1972B4j (6.3) with LEE and GEE. For LEE we set the 
absolute tolerance to le-OS. (a) During short integration times LEE satisfies the the error tolerance 
quite well. (b) However, for longer times we see an expected drift to error levels of le-03. (c) GEE 
method [A:GLMGEEj ((4.11) in this case) gives accurate error estimates even over long times. 
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FIG. 6.3. Convergence of GEE methods (A:GLMGEEj for problem (Prince42j (6.1). In (a) 
we show the error in the solution obtained by second-order GEE method (A.2) and the estimated 
global error, which follows it closely, as well as the difference between the true error and the error 
estimate. An asymptotic guide is provided by the red dashed lines. (b) This is the same as (a) but 
using the third-order method (4.Jt,I). 

We have explored several algorithms in this study. The methods [A:ExPrErEq] 
with exact principal error equation (2.19) [ ] are attractive because they offer global 
error estimates extremely cheaply; however, they were shown in [ ] to be unreliable 
as illustrated in Fig. 6.4. Strategies that directly solve the error equation, such as 
[A:SoErEq] (2.26), need a reliable way of estimating the local errors and the avail
ability of the Jacobian. We found these methods to be robust, especially the strategy 
proposed in [ ] for low-order methods. The Zadunaisky procedure [A:ZaPr] (2.28) is 
arguably one of the most popular approaches for global error estimation. It is related 
to [A:SoErEq], as discussed, and a particular case of the approach introduced in this 
study. The extrapolation algorithm [A:Ex] (2.30) is the most robust; however, it is 
also the most expensive and also a particular case of [A:GLMGEE]. 

The methods introduced here are based on a general linear representation. The 
particular case under study is given by form (4.1); however, the analysis is not re
stricted to that situation. Particular instances of second and third order are presented 
throughout this study. The error estimates can be used for error control; however, in 
this study we do not address this issue. 

We provide several numerical experiments in which we illustrate the behavior of 
the global error estimation procedures introduced here, their convergence behavior, 
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FIG. 6.5. Linear stability regions for the [A:GLMGEE} methods introduced in this study (a) 
and solution of method (A.I) for problem [LStab2} (6.4) with parameters such that it matches the 
spectrum indicated in (a) with marker *. Solutions are stable except the one for which the eigenvalues 
are outside the stability region (b). 

and their stability properties. 

Global error estimation is typically not used in practice because of its computa
tional expense. This study targets strategies that would make it cheaper to estimate 
the global errors and therefore make them more practical. 

Appendix A. Second-order methods. 

A.I. Other GL second-order methods. Here we provide two additional second
order methods that we used in our experiments. A second-order method with s = 3 
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and'Y = 0 in GLYE format is given by 

0 0 0 1 4 
1 0 0 1 0 

(A.1) My~= 4/9 2/9 0 1 0 
0 -1/2 3/2 1 0 

1/4 1/2 -3/4 0 1 

Another second-order method with s = 3 that is based on two second-order 
approximations ({ = 1/2) in GLYE format is given by 

(A.2) 

o 
1 0 

[ 

0 

My~ = 4/9 2/9 
5/12 5/ 12 
- 1/4 - 1/4 

o 1 -11/10 
o 1 13/30 
o 1 5/ 3 

1/6 1 0 
1/2 0 1 

Appendix B. RK3(2)Gl [ 1 in GL form (4.1). Method (5.1) corresponding 
to RK3(2)G1 (5 .2) [ 1 results in the following tableau in GLYE form: 

0 0 0 0 0 0 0 0 1 0 
1/2 0 0 0 0 0 0 0 1 0 
-1 2 0 0 0 0 0 0 1 0 
1/6 2/3 1/6 0 a 0 0 0 1 0 

(B.1) MYE = 
0 0 a 0 a 0 a 0 1 1 

-7/24 1/3 1/12 -1/8 1/2 a a a 1 1 
7/6 -4/3 -1/3 1/2 -1 2 0 0 1 1 
0 0 a 0 1/6 2/ 3 1/6 a 1 1 

1/6 2/ 3 1/ 6 a a a a a 1 0 
- 1/6 -2/3 -1/6 0 1/6 2/3 1/6 a a 1 

Appendix C. Second-order method with exact principal error equation. 
The following method is of type (2.19) and introduced in [ " (3.11)]: 

(C .1) 

0 0 0 a a 0 

1 1 0 1 1 0 1 1 0 2 2 2 2 2 2 
§.- M '- IF ·-.- 1 .- , 

5 0 5 0 3 1 1 a 3 1 1 0 a a 4' 2 4' 4' 2 4' 

1 1 8 2 - 1 4 29 31 22 
- 30 2 15 '3 '3 - 42 - 42 21 
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